GEFORDERT VOM



### Bundesministerium für Bildung und Forschung

# CrESt Project Closing Event

**Goal-based Strategy Exploration** 

Prof. Dr. Holger Schlingloff, Fraunhofer FOKUS / Humboldt-Universität

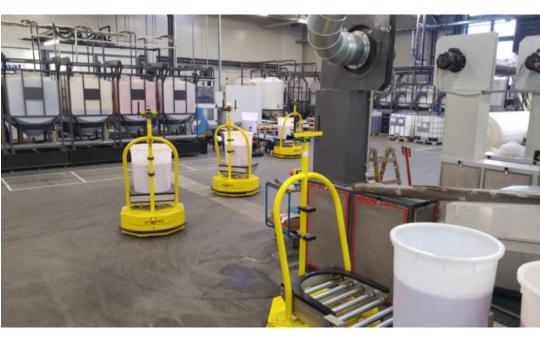
Online-Meeting, 16.10.2020

### **Problem Statement**

- In collaborative systems there are goals of the group as well as goals of individual participants
  - Example car platooning: group goal is to save fuel,

individual goal is to reach a destination

- Example transport robots: group goal is uninterrupted production, individual goal is minimal wear and tear
- Individual goals may support group goals, contradict them, or be orthogonal
- Quality of the system depends on the degree of goal satisfaction
- Research question: how can goals be used as a basis in the model-based development of collaborating embedded systems?
  - Formal description of goals and goal hierarchies
  - Avoidance of goal conflicts, definition of optimal behavior
  - Derivation of strategies and code from the description of goals
  - Evaluation of systems with respect to the defined goals





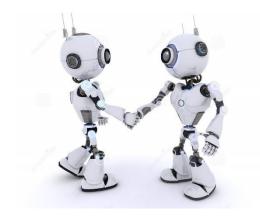

### Use Case Transport Robots



- Driverless transport vehicles
  - Serving (loading and unloading) of production machines
  - Carrying loads of 20-200kg
  - Fleets of 5-20 robots
- Historical development
  - First generation: rails or following a line
  - Second generation: on dedicated roads
  - Third generation: moving freely with humans
- Vision for the future: serving of machines done by robots, humans only for supervision only
  - Presentation on marketplace EC3



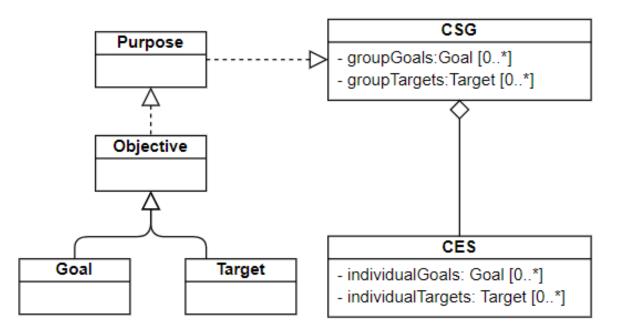
### Use Case Challenges


- Localization and self localization
  - Laser scanner for safety and localization
  - Pre-mapping of factory environment
  - Maximum likelihood pattern matching
- Route planning
  - Dijkstra shortest path algorithm for overall route
  - Dynamic window algorithm for collision avoidance
- Job scheduling
  - Robot hardware may have failures, roads may be blocked etc.
  - Wireless communication may be distorted
  - Server as a single point of failure may break down





## Collaborative Control of Transport Robots


- Challenges
  - Safety-critical (no collisions, no loss of tasks, no deadlocks, ...)
  - Open (new vehicles can join the fleet)
  - Inhomogeneous (not all vehicles completely alike)
- Auction-based coordination
  - Simple bidding: cost function
  - More complex approach: "virtual money"
  - Earn new money by completing a transport job
  - Spend money to buy a new job
- Advantages
  - More flexibility and robustness, higher throughput
  - Better scalability
  - More security

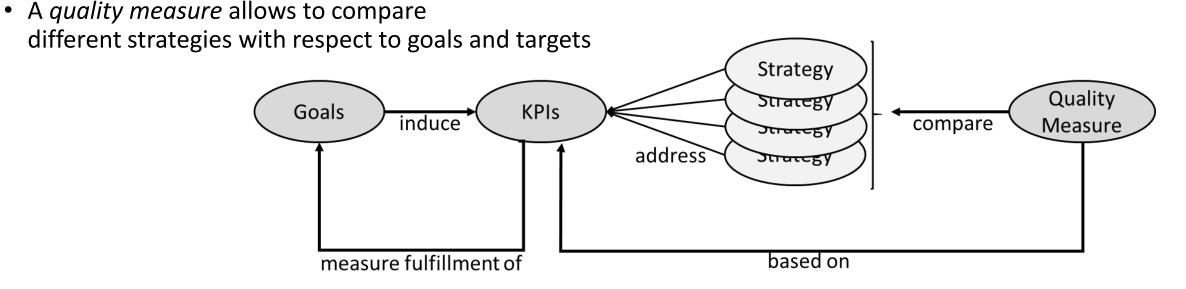




### Solution (1)

- Distinguish between goals ("hard goals") and targets ("soft goals")
- A goal is a set of states, a target is a fuzzy set of states
  - both describe what the system should accomplish at runtime
  - a goal shall be reached
  - a target shall be approximated

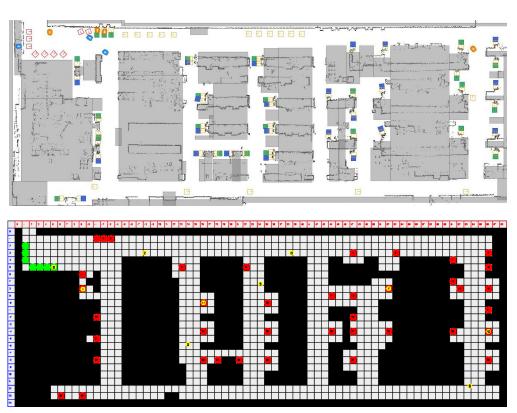





**Collaborative Embedded Systems** 

### Solution (2)




- Key performance indicators (KPIs) describe the degree of goal fulfillment
- A strategy is a function choosing one out of several possible actions, for a certain system and context state
  - The behavior of an autonomous agent is largely determined by its strategy
  - The overall system behavior of a group results from the behavior of its components



### 8

### Solution (3)

- Alternating Signal Temporal Logic (ASTL\*) for the formalization of KPIs
  - **G** $(Batt.lvl \ge 0.4 \land Batt.lvl \le 0.7)$
  - $(\langle bid.i.j \rangle) \mathbf{G} \forall k(waitingtime(m_k) \le 100)$
- Robust semantics reflect the quality measure
- Discrete modelling of scenarios and actions
  - e.g., floor plan, robots, docking stations
  - Auction system for job scheduling
- Using model checkers to generate strategies
- Using simulators to evaluate strategies





6

Anzahl Roboter

8

10

#### CrESt Projektabschluss, H. Schlingloff, FOKUS/HU

12

Scheduling 1

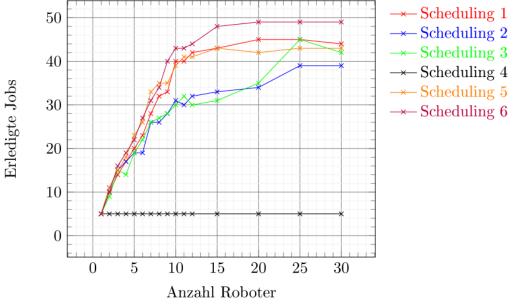
--- Scheduling 2

Scheduling 5

9

# Results (1)

- Simulative evaluation of goal-based strategy development
  - Definition of a quality measure for strategies regarding, e.g., equal wear of tear of robots
  - Simulative comparison of several strategies • for transport robots (first-come-first-served, shortest-path, shortest-time, lowest-workload, best-energy, ...)
  - Strategy defined after formal definition of quality measure improved goal fulfillment by nearly 20%

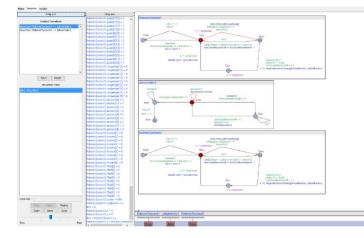

600

400

200

2

Zeit in Sekunden






## Results (2)



- Different kinds of properties were analyzed
  - Temporal properties, e.g., no deadlocks, safety and liveness, ...
  - Timing properties, e.g., responsiveness, best/worst timing, ...
  - Performance properties, e.g., throughput, utilization rate, ...
  - Fault tolerance properties, e.g., roadblocks, failures, ...
  - Flexibility properties, e.g., additional robots and stations, alternative floor plans, ...
  - Strategic properties, e.g. security, intruders, traitors, goals & strategies, ...
- Model checking approach is subject to state explosion problem
  - Combination with abstraction refinement techniques
  - Combination with machine learning approaches



### Success stories



- Car platooning: "Velox" model cars
  - Educational component
  - Integrating machine learning; safety?
- Transport robot use case
  - First decentralized industrial solution
  - Specification and validation of adaptive goals
  - (Decentralized) monitoring
- New industrial project "Commissioning of parts"
  - Collecting items from a storage
  - Storage goes to commissioner (not vice versa)





Bundesministerium

für Bildung und Forschung







### Fragen ?

27.05.2020